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Supplementary Figure 1. Comparison of Coverage by WGS and WES in NOTCH1. 

The orange and blue curves show mean WGS coverage across germline samples 

sequenced using PCR-based (N=8) and PCR-free (N=78) protocols, respectively.  The 

gray curve depicts WES coverage over coding exons only.  The gene model is depicted 

below, with thick black boxes indicating coding exons. GC content is rendered below 

(100 bp window with moving step of 1bp), colored red where GC% is above the genome-

wide average of 41%, and black where below. The genomic region shown includes exons 

24-30 of NOTCH1 and shows the improved coverage of PCR-free WGS. 
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Supplementary Figure 2. Sequence coverage of the three platforms used for three-

platform sequencing. Mean coverage of the 5 sequencing experiments for each of the 78 

cases in the clinical study are shown in the first 5 columns.  Coverage is averaged over 

the entire genome for WGS and across bases in the coding exome for WES and RNA-

Seq.  The right two columns show WGS coverage of the 33 overlapping PCGP cases for 

comparison.  The dark lines indicate median values.  The boxes indicate the interquartile 

range (IQR).  Whiskers extend to 1.5×IQR unless there are no outliers that exceed 

1.5×IQR, in which case they are the minimum and maximum values. 
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Supplementary Figure 3. Tumor in Normal Contamination of SJHGG001.  This 

illustrative model depicts 4 tumor clones and contaminating normal cells in the tumor 

sample of SJHGG001 (left), and normal cells with contaminating tumor cells from a 

single clone in the normal sample (right).  Various profiles of mutations are depicted by 

symbols and described in the table below along with details of their detectability. 
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Supplementary Figure 4. Limit of detection analysis.  The probability of detecting a 

variant with sufficient read evidence to make a call in WES and WGS is shown in black 

and green lines.  We chose 100X WES and 30X WGS for our current study, 200X WES 

based on prior literature 1,  and 45X WGS based on improvements made to our clinical 

genomics program after this pilot study completed.  The blue lines show the probability 

of detection by at least 3 reads in WGS or WES and at least one read in the other 

platform, which is the standard used by the variant detection pipeline and cross-validation 

filtering pipeline, respectively. Details of the calculations are in the Supplementary 

Methods section. 
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Supplementary Figure 5. Bi-allelic loss of RB1 in a retinoblastoma caused by two 

chromothripsis events. A total of 70 CNAs and 41 SVs (including two RB1 fusions) 

were detected on chromosome 13. The RB1 gene has normal ploidy except for two <1Kb 

intronic deletions, one of 781bp in intron 2 and another of 686bp in intron 6. Lines 

connecting genomic positions indicate a DNA SV. The wiggle plot marked DNA and 

RNA shows the read-depth in WGS and RNA-Seq of the tumor genome, respectively. (a)  

Complex re-arrangement at intron 2 of RB1. The orange line shows that one of the intron 

2 SVs is linked to the GJA3 gene located 28Mb upstream, resulting in an out-of-frame 

fusion transcript that links RB1 exon 2 to GJA3 5’ UTR (indicated by the orange arrow). 

(b) WGS and RNA-Seq at the RB1 locus. Orange and green lines in RNA-Seq link exons 

2 and 6 of RB1 to their respective fusion partners. (c) Complex re-arrangement at intron 6 

of RB1. The green line shows that one of the intron 6 SVs is linked to an intergenic 

region 10Mb downstream, resulting in a fusion transcript linking RB1 exon 6 to aberrant 

transcription in the intergenic region, causing truncation of the RB1 protein. 
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Supplementary Figure 6. Bi-allelic loss of RB1 in a retinoblastoma caused by two 
chromothripsis events. 

20,710,000 20,730,000

48,900,000 48,950,000 49,000,000 49,050,000

59,500,000 59,700,000

4
8
9
2
8
9
4
5

4
8
9
2
9
6
3
0

2
6
3
5
6
3
2
2

5
8
2
0
7
1
9
3



7 
 

 

 
 

Supplementary Figure 6. WGS and WES coverage of three genes with P or LP 

SNVs or indels missed by WES.  Plots show the WGS (blue) and WES (gray) coverage, 

averaged over all 78 germline samples, along the genes FLT3, SH2B3, and CEBPA.  The 

gene model and GC content are depicted below the coverage graph, as in Supplementary 

Figure 1.  Arrows indicate the location of P or LP SNVs/indels that were found by WGS 

but missed by WES.  Each of these locations is well covered in WGS but systematically 

uncovered in WES. 
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Supplementary Figure 7. Comparison of P/LP sub-arm CNAs detected or missed by 

WES CNA analysis.  Each panel shows the distribution of CNAs detected by both WGS 

and WES (Found; n=18) or detected by WGS and missed by WES (Missed, n=36).  The 

dark lines indicate median values.  The boxes indicate the interquartile range (IQR).  

Whiskers extend to 1.5×IQR unless there are no outliers that exceed 1.5×IQR, in which 

case they are the minimum and maximum values. a) Distribution of CNA genome size 

(log2 of segment size in basepairs) b) Distribution of number of exons within CNAs c) 

Distribution of the number of basepairs of exonic regions covered by the CNA. Wilcox 

Rank Sum test showed significant differences in the distributions with p-values of p-

value = 0.002253, 0.003404 and 0.005525 respectively. 
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Supplementary Figure 8. NOTCH1-ITD in SJMLL002. (a) Whole genome coverage 

for a 362 bp region encompassing intron 27 and exon 28 of NOTCH1 (NM_017617; 

chr9:139396703-139397065[hg19]); maximum coverage is 76X. Dotted lines throughout 

the figure indicate the position of a 96 bp duplication. (b) WGS showing normally 

mapped reads in grey with clipped basepairs in various other colors. CREST predicted a 

tandem duplication of chr9:139396917-139397012. (c) RNA-Seq showing reads as 

above, but additionally, canonical splicing from NOTCH1 exon 27 (not shown) into 

NOTCH1 exon 28 as light blue horizontal lines.  Clipped reads are seen at the same 

positions as WGS and Cicero independently predicted the same duplication. (d) 

Schematic representation of the non-duplicated region. Region 1 is intron 27 sequence. 
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Region 2 is the start of exon 28; the position of the exon 28 splice acceptor is shown with 

a black arrow. The ITD is comprised of regions 1 and 2. Region 3 shows the non-

duplicated portion of exon 28. (e) Schematic representation of the duplicated locus shows 

regions 1 and 2 are arrayed in tandem. Predicted protein translation based on Cicero’s 

ITD contig is shown below. Exon 27 sequence splices into the upstream splice acceptor 

(black arrow). Although the ITD contains intronic sequence, the reading frame is 

preserved. (f) Schematic representation of NOTCH1 from Protein Paint 

(https://pecan.stjude.org/#/proteinpaint/NOTCH1).  The approximate position of the 

duplicated region is shown as a blue rectangle encompassing the distal end of the 

heterodimerization domain and the proximal end of the transmembrane domain. This 

region is known to undergo tandem duplication in T-ALL. 

 

https://pecan.stjude.org/#/proteinpaint/NOTCH1
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Supplementary Figure 9. Bioinformatics pipeline. (a) Tumor and normal DNA is 

sequenced using WGS to a target depth of 30x and WES to a target depth of 100x.  

Tumor RNA is also sequenced using RNA-Seq.  Gross chromosomal changes, sample 

purity statistics, germline and somatic lesions, and gene expression information are each 

determined using one or more of the types of sequencing performed, as indicated by the 

semicircles. (b) A more detailed view of the pipeline used for mapping and variant 

discovery. 
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Supplementary Table 1. RT-PCR Ct Values 

RT-PCR Ct values for a) ETV6-RUNX1 and b) KMT2A-MLLT3. A relative increase of 

3.2 Ct values between GAPDH and test gene indicates a log10-fold decrease in 

expression of the test gene. 

 

a) 

 Ct(ETV6-RUNX1) Ct GAPDH 

SJETV093 25.85 19.5 

Pos control 21.65 15.15 

 
b) 

 Ct(KMT2A-MLLT3) Ct GAPDH 

SJMLL019 34.12 16.84 

Pos control 23.33 17.45 
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SUPPLEMENTARY METHODS 

 

WGS, WES and RNA-Seq Library Preparation and Sequencing 

 

WGS libraries were constructed using the TruSeq DNA PCR-Free sample preparation kit 

(Illumina, Inc) following manufacturer’s instructions. Briefly, 1 μg of genomic DNA was 

sheared by acoustic fragmentation using a Covaris E210 (Covaris, Woburn, MA) with the 

recommended settings for 350 bp fragments. The fragments were end-repaired, 3’ 

adenylated and an indexed paired-end adapter ligated. The adapter-ligated library was 

purified using the sample purification beads provided in the kit prior to sequencing. 

 

WES libraries were prepared using the TruSeq exome enrichment kit v1 (Illumina, Inc) 

per manufacturer’s instructions, with some modifications. Briefly, 1 μg of genomic DNA 

was fragmented and end-repaired as above, then ligated with paired-end sequencing 

adaptors and amplified using 10 PCR cycles. At least 500 ng of each DNA library sample 

were pooled and hybridized with biotinylated oligo RNA baits corresponding to exome 

sequences for two-overnight incubations at 58ºC. Each overnight hybridization 

incubation was followed with binding to Streptavidin-conjugated Magnetic Beads, a 

washing step and an elution step. After the second hybridization and elution, the exome-

enriched libraries were again amplified via a 10-cycle PCR. We optimized Illumina’s 

TruSeq exome enrichment protocol by reducing the number of PCR cycles from 12 to 10 

for both the pre- and post-enrichment libraries. We also noticed that the timing of the first 
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and second hybridization cleanups were critically important. These two modifications 

resulted in better library yield and lower sequencing read duplication rates. 

 

RNA-Seq libraries were constructed as follows: Briefly, 0.1 – 1 µg of total RNA was 

ribo-zero gold treated for ribosomal RNA reduction - removing cytoplasmic ribosomal 

RNA (rRNA) and mitochondrial rRNA by hybridizing the rRNA to biotinylated capture 

probes. The ribosomal-reduced RNA was bead-purified then chemically fragmented and 

reverse transcribed with SuperScript III Reverse Transcriptase (Thermo Fisher Scientific) 

to generate complementary DNA (cDNA). The resulting cDNA fragments underwent end 

repair, adenylation of the 3’ end and then ligation of adapters. The RNA-Seq libraries 

were PCR-enriched using 11 PCR cycles. We modified Illumina’s standard TruSeq 

Stranded Total RNA protocol by reducing the number of PCR cycles from 15 to 11, 

resulting in better quality libraries and reduced sequencing read duplications. We also 

suggest that some degraded total RNA samples may not require fragmentation. 

 

The resulting WGS, WES and RNA-Seq libraries were assessed for quality and size 

range using the Agilent 2100 BioAnalyzer (Agilent Technologies). Library quantity were 

determined using the Kapa NGS library quantification kit with Illumina library-specific 

primers and external standards (Kapa Biosystems) and analyzed on the Eco Real-Time 

PCR System (Illumina). Libraries were diluted to 2nM, denatured with sodium hydroxide 

and clustered either on the cBot (Illumina) using the TruSeq PE Cluster Kit v3-cBot-HS 

(Illumina) or directly on a HiSeq2500 instrument in Rapid mode (using the TruSeq Rapid 

PE Cluster kit) according to the manufacturer's instructions. Sequencing was performed 
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on HiSeq 2000 or HiSeq 2500 instruments with paired-end (2 x 101 bp) sequencing using 

TruSeq SBS Kit v3-HS or TruSeq Rapid SBS Kit (Illumina). 

 

Computational Infrastructure 

 

A dedicated compute and storage infrastructure was designed and implemented by the 

High Performance Computing Facility at St. Jude. One primary design goal was to isolate 

this resource as much as possible from external dependencies to minimize production 

impact and increase administrative control. The environment includes an 84 node HPC 

cluster with over 1,300 computing cores at a memory ratio of 8 GB system RAM per 

core, an InfiniBand FDR cluster interconnect in a fat tree topology, and an IBM GPFS 

parallel filesystem with redundant storage blocks yielding 500 TB of analysis workspace. 

The storage environment is also accessible on the internal institutional network using 

NAS protocols. This access is used by the sequencing lab (for receiving raw instrument 

run data), analyst workstations, and by various application and database servers providing 

support services. One such application service is the clinical genomics LIMS, which is 

integrated with the sequencers and the HPC environment to allow BCL conversion and 

demultiplexing to take place directly on the compute cluster before intake into the 

analysis pipeline. Integration with institutional identity management at all levels of the 

analysis infrastructure ensures that authorization to cluster and storage resources were 

controlled. 

 



16 
 

All analytical pipelines were run in an in-house software infrastructure consisting of our 

TARTAn API for Reproducible and Traceable Analyses and RAPTR (Rapid-Access 

Process Tracking and Reporting). 

 

We developed TARTAn for managing all of the high performance computing runs and 

management of result files.  With TARTAn, every run of an analysis pipeline takes place 

in an analysis-specific run directory which contains a standard set of files and 

subdirectories.  The subdirectories are used to separate files into four classes that are 

managed differently: (1) symbolic links to input files, (2) intermediate files that are 

removed at the end of the run, (3) workspace files such as logs that are archived in a zip 

file at the end of the run, and (4) output files that are made read-only at the end of the run.  

The targets of the symbolic links from class (1) are output files from other runs, so that 

the full provenance of an output file can be determined.  Output files are further linked 

from an index, which is organized by project, case, sequencing type, and file type, rather 

than by analysis run.  The index allows easy and reliable determination of the most recent 

result for a particular case and analysis.  In addition to the subdirectories, there are also 

files that store the environment during the run, from which the configuration and code 

version may be determined.  Code and configuration releases were performed as 

TARTAn analyses, which allowed all previous versions of code to be retained at 

permanent file paths.  This allowed us to deploy code and configuration changes while 

pipelines were still running; pipelines executing during the deployment would continue to 

use the previous version of code until they completed. 
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We developed the RAPTR database for tracking sequencing data and the processes run 

on it.  The RAPTR database tracks information on every read group including sample, 

sequencing type, sequencer run and lane, and which BAM file(s) include mappings for 

the read group.  It also tracks every analysis run that has been performed on a read group, 

a BAM file, or a pair of BAM files, including the current status of the run.  The analysis 

runs in RAPTR correspond directly to the analysis runs in TARTAn, which facilitates 

status tracking. 

 

Pipeline Automation Using RAPTR and TARTAn 

 

We developed a class library that uses RAPTR and TARTAn to automate, fully or in 

part, the analysis runs that we perform.  The class library has the ability to comb the 

database for samples that need to run through a particular analysis (i.e. all dependencies 

are satisfied and the analysis has not already run), setup the analysis run in TARTAn, and 

then execute the run.  We employed cron to regularly invoke this process such that most 

of the analysis runs could be performed without requiring any user intervention.  Almost 

none of the analyses that were performed were written to use TARTAn, so we developed 

wrappers that would create the TARTAn run, run the analysis in the intermediate file 

space, and then copy the final result files to output on completion.  In this way, we could 

run a diverse set of analysis tools with little or no modifications to the underlying code. 

 

Some analysis runs were not completely automated.  For these, we wrote a program that 

uses RAPTR, and the symbolic links for input files in TARTAn, and the state of various 
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auditing files and directories in TARTAn, to automatically determine the status of the 

analysis run and which samples are included.  Invocation of this script was incorporated 

into SOPs to ensure that the status of these partially-automated runs would remain up-to-

date without significant manual effort. 

 

Pipeline Validation using COLO-829 

 

To evaluate the sensitivity and PPV of our pipeline, we made use of the well 

characterized COLO-829 cell lines, which provided a paired set of tumor and normal 

genetic material suitable for our combined somatic-germline analyses. We first compiled 

an extensive set of re-sequencing data for these cell lines, consisting of 14  

WGS data sets (8 tumor, 6 normal) and 5 WES data sets (3 tumor, 2 normal). Using a 

previously published set of coding SNVs and indels from the initial COLO-829 genome 

publication 2, we assessed the sensitivity of our pipeline. All but 4 of the 292 variants 

initially reported by Pleasance, et al., were detected, yielding a baseline recall rate of 

0.99. While no gold standard catalogue of COLO829 structural & copy number variants 

existed, we used extensive re-sequencing data and multiple internal (CONSERTING, 

CREST) and external 3,4 calling algorithms to construct a comprehensive list of 48 high 

confidence SV events. This result set was used in recurrent proficiency examinations to 

ensure that no pipeline modifications negatively impacted variant detection. 

 

Limit of Detection Analysis 
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To assess the power to detect variants for our study design, we assumed a constant 100X 

for WES and 30X for WGS, and used binomial distribution to calculate the probability of 

observing >= 3 reads in one platform (as automatic detection) and observing >=1 reads in 

the other platform (as being observed for validation purpose), for underlying MAFs 

ranged from 0.01 to 0.5, which correspond to cancer cell fraction of 2% to 100% in 

diploid regions. To calculate the probability of one variant being detected and validated, 

we multiply the probability of automatic detection in one platform (i.e., >= 3 mut reads) 

and the probability of observing the mutant reads in the other platform (i.e., >=1 mut 

read), by assuming independence between samplings during WES and WGS sequencing. 

In addition, we performed re-sampling analysis to cross justify the above theoretical 

analysis, using NRAS G12D locus from case SJBALL021900 (with purity of 92%, and no 

sign of tumor in normal contamination, 53/110 in tumor WES, 19/45 in tumor WGS). For 

each predefined MAF, α, we sampled reads from tumor bam with probability α/0.92 and 

from normal bam with probability 1-α/0.92 with replacement. 100 reads were sampled 

from tumor for WES and 30 reads from tumor for WGS. 
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SUPPLEMENTARY NOTES 

 

Supplementary Note 1: SNV/indel call rate in WES 

As shown in Supplementary Data 6A-D, prior to quality filtering and cross-validation, 

there was a higher calling rate in WES than WGS for SNVs and more so for indels using 

the same threshold for variant detection 5,6. Specifically, if we count only indels that had 

sufficient coverage in capture validation for ascertaining somatic mutation verification 

status as presented in Supplementary Data 6B, there are a total of 404 WES-only indels 

and 24 WGS-only indels. Of the 404 WES-only indels, only 14 (3.5% of 404) were of 

high quality while the vast majority (93.3%, 377 out of 404) were in highly repetitive 

regions of short tandem repeats (STR) or homopolymers of which nearly all (96.8%, 

365/377) have low mutant allele fraction (MAF) of <0.1. Less than 4% of the WES-only 

indels were verified by custom capture. By contrast, of the 24 WGS-only indels, the 

majority (91.7%, 22/24) were of high quality and only a subset (33.3%, 8/24) were in 

repetitive regions. The majority (16 out of 24; 66.7%) of WGS-only indels were verified 

by custom capture even though many (15 out 24, 62.5%) had low MAF (<0.1). 

 

The higher error rate of WES-only indels have been reported previously in a study that 

compared the indel genotype calls from WGS and WES in HapMap sample NA12878 7. 

Our study confirmed the previous observation as the low validation rate (<4%) of those 

WES-only indels; the large majority of which had low MAF and were predominantly 

located in highly repetitive regions. 
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Supplementary Note 2: Expression of DIP2C-PDGFRA fusion gene 

As shown in Figure 2b, the PDGFRA amplification encompassed only the 3’ end of 

PDGFRA and omitted the extracellular domains encoded by exons 1-9. Counting of 

wildtype and fusion junction reads from RNA-Seq showed 727 wild-type exon 9-10 

junctions, implying expression of wild-type PDGFRA was higher than that of fusion gene 

whose RNA junction reads numbered 26 and 149 from DIP2C exon 1 and PDGFRA 

exons 10 and 11 respectively. This showed, surprisingly, that the expression of amplified 

region of PDGFRA was not strongly correlated with the level of DNA amplification. 

Further investigation showed that DIP2C has generally low expression in High Grade 

Glioma with FPKM of <14 in non-amplified PCGP samples (data is available at 

https://pecan.stjude.org/proteinpaint/DIP2C). Given that the weak DIP2C promoter drove 

fusion gene expression, we hypothesize that amplification was necessary to achieve a 

sufficient level of DIP2C-PDGFRA for oncogenic action. Similar rearrangements of 

PDGFRA including KDR-PDGFRA and PDGFRAΔ8, 9 that lack intact extracellular 

domains show PDGFRA kinase activation 8 and appear to be oncogenic even at relatively 

low expression levels. For example, Brennan et al. (2013) 9 used a >10% of total 

PDGFRA expression to call a sample positive for the rearrangement in their analysis of 

RNA-Seq generated from glioblastoma samples from The Cancer Genome Atlas (TCGA) 

project. 

 

Supplementary Note 3: Hetererogeneity of MYCN Amplifications in SJRB051 

The inconsistency between RB1 rearrangement and MYCN amplification implies that 

these events occurred at different times during tumor evolution. The DNA specimen for 
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this study was extracted from a different vial from PCGP (Supplementary Data 3, column 

K); however the bi-allelic RB1 re-arrangements are present in both specimens, suggesting 

that disruption of RB1 was an early event present in every tumor cell. In contrast, the 

MYCN amplification is likely to be a later event that is present in a subset of tumor cells. 

Given the high copy number and focal nature of the PCGP sample’s MYCN 

amplification, episomal amplification via double minutes is a likely explanation 10. 

Differing levels of oncogene amplification between cells of the same tumor has been 

previously reported in pediatric glioma,11 and heterogeneity of MYC-bearing double-

minutes has been previously reported in our study of medulloblastoma 3.  

 

Supplementary Note 4: FX1R-BRAF fusion in SJLGG026 

Neither WGS SV nor RNA-Seq SV detected the known FXR1-BRAF fusion as 

documented in Supplementary Data 7A. Manual inspection of the aligned WGS data 

recovered two breakpoint reads, insufficient for an SV call by our pipeline. The average 

WGS coverage in the tumor was 36.8X (Supplementary Data 3) and the coverage at the 

two breakpoint regions was 54X and 36X. Manual inspection of aligned RNA-Seq reads 

at expected positions of exon fusion recovered one fusion read, also insufficient for the 

pipeline to call. The fusion was initially discovered by WGS in our research project, 

PCGP. The PCGP WGS coverage for this tumor was 65X and the BRAF fusion was 

detected by 3 junction reads and the estimated MAF of 0.04 12. In RNA-Seq, FPKM for 

FXR1 and BRAF is 7.4 and 6.8 respectively. Therefore, we would conclude that the 

failure to identify the fusion in WGS and RNA-Seq was caused by the low MAF (0.04) 

of the fusion in a sample with low tumor purity.   
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Supplementary Note 5: Pathologic and likely pathologic mutations not detected by 

WES 

A total of seven pathologic or likely pathologic somatic SNVs/indels were discovered by 

WGS alone.  Of those seven, two (FLT3 and SH2B3) had no support in WES, and five 

had insufficient support in WES for de novo detection (Supplementary Data 7C).  We 

manually inspected each of the seven to determine the cause for non-detection in WES.  

Four out of the seven samples also had whole exome sequencing from various research 

studies.  For these four, we combined the reads from the clinical and research 

experiments and ran the resulting data through the analytical pipeline to determine if 

additional coverage would allow the variants to be detected by WES.  The results are 

given in Supplementary Data 7C.  In brief, three of the seven were in regions of 

systematically low coverage and would therefore be unlikely to be recovered by 

additional coverage (one had additional reads, and it was not detected with additional 

coverage).  One appeared to be caused by poor capture of the indel-harboring fragments 

and would also be unlikely to be recovered by additional sequencing.  The other three 

showed no signs of systematic WES-related problems and were all recovered with 

additional reads. 

 

Supplementary Note 6: Additional Analysis on Gene Fusions Detected only by WGS 

Three gene fusions, KMT2A-MLLT3 in SJMLL019, ETV6-RUNX1 in SJETV093 and 

KIAA1549-BRAF in SJLGG020, were detected only by WGS. The RNA-Seq coverage of 

SJLGG020, SJMLL019 and SJETV093 had 43-47% of the exons with >20X coverage 
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while the average of the entire cohort was 47% (Supplementary Data 4). Therefore, the 

RNA-Seq coverage of all three samples was within the normal range for the study.  

 

We also examined the expression level of the two fusion partner genes in these three 

cases (Supplementary Data 7A). Specifically, KIAA1549 was expressed at a low level in 

SJLGG020 (FPKM of 4.30 and 10.0145 for KIAA1549 and BRAF respectively). Low 

expression of KIAA154, whose promoter drives the fusion, provides a good explanation 

for the absence of detectable KIAA1549-BRAF fusions transcripts in RNA-Seq, 

particularly as an estimated 70% of KIAA1549 expression would come from the wildtype 

haplotype based on estimated tumor purity from WGS data (Supplementary Data 3). 

Expression of KMT2A-MLLT3 in SJMLL019 (FPKM of 7.93 and 2.64 respectively) 

shows low expression of MLLT3. Expression of ETV6-RUNX1 in SJETV093 (FPKM of 

27.53 and 25.02 respectively) were not as low as the previous two examples; however the 

reverse transcriptase PCR (RT-PCR) experiment described below shows that the fusion 

transcript itself was expressed at a low level. We performed reverse transcriptase PCR 

(RT-PCR) to quantify expression levels of KMT2A-MLLT3 in SJMLL019 and ETV6-

RUNX1 in SJETV093. Using standard procedures, we calculated ETV6-RUNX1 and 

KMT2A-MLLT3 expression relative to the housekeeping gene, GAPDH in samples 

SJETV093 and SJMLL019 respectively as well as in positive control cell lines. The 

ETV6-RUNX1 fusion expression was approximately two logs lower than the level of 

GAPDH in both the control cell line and in SJETV093. KMT2A-MLLT3 showed a similar 

pattern with the expression of the fusion in the control cell line 1.5-2.0 logs lower than 

GAPDH. In SJMLL019, the expression of the fusion was approximately 5 logs lower 
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than the expression of GAPDH (or 3 logs lower than the cell line fusion expression level). 

For reference, common fusions assayed on our lab, including RUNX1-RUNXT1, TCF3-

PBX1 and BCR-ABL, are typically less than one log-fold lower than GAPDH. Cycle 

threshold (Ct) values are shown in Supplementary Table 1. In summary, all of the fusions 

that RNA-Seq missed were expressed at low levels in tumor samples. 

 

Supplementary Note 7: Comparison of validation statistics on variants that passed 

the cross-validation filter with unfiltered variants 

The cross-validation filter, which integrates variant calls from multiple platforms, is a 

critical process to ensure high accuracy of variant analysis in our clinical pipeline. Using 

exonic SNVs as an example, we show that cross-validation filtering improves PPV while 

maintaining a high sensitivity.  

 

The PPV and sensitivity for exonic SNVs that pass cross-validation is 99% and 94%, 

respectively as shown in Figure 3 based on variant count of actual positives (n=695), 

predicted positives (n=662) and true positives (n=653) presented in Supplementary Data 

6D. The summary variant counts were derived from raw variant data presented in 

Supplementary Data 6A-C which could also be used for calculating statistics on 

unfiltered variants. The following process can be used to calculate PPV and sensitivity 

for unfiltered variants combining WGS and WES data. By selecting variants detected by 

WGS or WES (filter column B “Platform” by selecting WGS_WES, WGS_ONLY, 

WES_ONLY) for unfiltered variants (select all in column C “Pipeline”) that are covered 

by custom capture (In column A, de-select “UNCOVERED”), there are a total of 764 
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“predicted positive” variants that can be evaluated for their accuracy using the custom 

capture data. By selecting “SOMATIC” and “SOMATIC*” in column A, there are a total 

of 661 variants which are the true positive variants. Therefore, unfiltered variants 

detected by WGS or WES would have a PPV of 87% (661/764) with a sensitivity of 95% 

(661/695). This shows that the cross-validation filter implemented in our clinical pipeline 

is highly effective in improving PPV by 12% while maintaining a high sensitivity (94% 

using filtered variants compared to 95% using unfiltered variants).  
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